若1/x+1/y=2,則2x-xy+2y/3x+5y+3y=
就是利用的整體的代入法!! 解:因為1/x+1/y=2 所以x+y=2xy (2x-xy+2y)/(3x+5xy+3y) =[2(x+y)-xy]/[3(x+y)+5xy] 將x+y=2xy代入上面的式子: =[4xy-xy]/[6xy+5xy] =3xy/11xy =3/11
X分之1加Y分之1=2,則2X減XY加2Y除以3X加5XY加3Y=?
1/x+1/y=2 (x+y)/xy=2 x+y=2xy (2x-xy+2y)/(3x+5xy+3y) =[2(x+y)-xy]/[3(x+y)+5xy] =(4xy-xy)/(6xy+5xy) =3xy/11xy =3/11
若1/x-1/y=2,則2x-3xy-2y/x-2xy-y的值是
1/x-1/y=2 (y-x)/(xy)=2 x-y=-2xy (2x-3xy-2y)/(x-2xy-y) =[2(x-y)-3xy]/[(x-y)-2xy] =[2(-2xy)-3xy]/(-2xy-2xy) =(-7xy)/(-4xy) =7/4
若1/x-1/y=2,求2x+xy-2y/3x-2xy-3y的值。
若1/x-1/y=2,則 2xy=x-y 2x+xy-2y/3x-2xy-3y=(2x+0.5x-0.5y-2y)/(3x+x-y-3y)=5/8=0.625
若1x+1y=2,則2x?xy+2y3x+5xy+3y=_____
由+=2,得x+y=2xy
則====.
故答案為.