A,B兩點(diǎn)的距離是線段AB。AC+CB是大于AB的(兩點(diǎn)之間線段最短。)
由此可得:三角形的任意兩邊之和大于第三邊。兩點(diǎn)之間線段最短是一" />

嫒美直播免费版app下载-嫒美直播永久免费版下载-嫒美直播最新下载安装

當(dāng)前位置:首頁 > 教育綜合 > 正文

三角形任意兩邊之和( )于第三邊。

三角形任意兩邊之和( )第三邊。

三角形三邊關(guān)系。
A,B兩點(diǎn)的距離是線段AB。AC+CB是大于AB的(兩點(diǎn)之間線段最短。)
由此可得:三角形的任意兩邊之和大于第三邊。兩點(diǎn)之間線段最短是一個(gè)公理。又名線段公理。
比如把紙上的兩個(gè)點(diǎn)重合,把紙折疊起來,那兩個(gè)點(diǎn)就重合了,距離無限近。
“三角形兩邊之和大于第三邊”為其引申內(nèi)容,不能使用它來證明“兩點(diǎn)之間線段最短”。

三角形兩邊之和等于第三邊是什么?

三角形兩邊之和不可以等于第三邊。

根據(jù)三角形三邊的關(guān)系可知,兩邊之和大于第三邊,兩邊之差小于第三邊。三角形是由同一平面內(nèi)不在同一直線上的三條線段首尾順次連接所組成的封閉圖形。

證明過程如下:

設(shè)任意三角形的三邊分別為:a,b,c。a大于0,b大于0,c大于0。

根據(jù)反證法假設(shè):三角形的任意兩邊之和都等于第三邊。

所以:a+b=c,a+c=b,b+c=a。

將三式相加可以得出:2(a+b+c)=(a+b+c)。

即:a+b+c=0。

又因?yàn)閍大于0,b大于0,c大于0。

所以三角形兩邊之和不可以等于第三邊。

三角形的性質(zhì):

一個(gè)三角形的三個(gè)內(nèi)角中最少有兩個(gè)銳角。在三角形中至少有一個(gè)角大于等于60度,也至少有一個(gè)角小于等于60度。三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。

在一個(gè)直角三角形中,若一個(gè)角等于30度,則30度角所對(duì)的直角邊是斜邊的一半。直角三角形的兩條直角邊的平方和等于斜邊的平方(勾股定理)。

三角形中任意兩邊之和什么第三邊?

三角形基本定理:組成三角形的任意兩邊之和大于第三邊

三角形任意兩邊之和一定大于第三邊。 對(duì)嗎?

對(duì)。 三角形三邊關(guān)系是三角形三條邊關(guān)系的定則,具體內(nèi)容是在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。直角三角形的兩條直角邊的平方和等于斜邊的平方。直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。

在一個(gè)三角形中,任意兩邊之和大于第三邊嗎?

在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。設(shè)三角形三邊為a,b,c,則a+b>c,a>c-b;b+c>a,b>a-c;a+c>b,c>b-a。證明過程如下:

如圖,任意△ABC,求證AB+AC>BC。

證明:在BA的延長線上取AD=AC

則∠D=∠ACD(等邊對(duì)等角)

∵∠BCD>∠ACD

∴∠BCD>∠D

∴BD>BC(大角對(duì)大邊)

∵BD=AB+AD=AB+AC

∴AB+AC>BC

特殊三角形的三邊關(guān)系:

性質(zhì)1:直角三角形兩直角邊的平方和等于斜邊的平方?!?/p>

性質(zhì)2:在直角三角形中,兩個(gè)銳角互余?!?/p>

性質(zhì)3:在直角三角形中,斜邊上的中線等于斜邊的一半。

性質(zhì)4:直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。

擴(kuò)展資料

三角形的其他性質(zhì)

1 、在平面上三角形的內(nèi)角和等于180°(內(nèi)角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于與其不相鄰的兩個(gè)內(nèi)角之和。

推論:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

4、 一個(gè)三角形的三個(gè)內(nèi)角中最少有兩個(gè)銳角。

5、 在三角形中至少有一個(gè)角大于等于60度,也至少有一個(gè)角小于等于60度。

6 、三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。

7、 在一個(gè)直角三角形中,若一個(gè)角等于30度,則30度角所對(duì)的直角邊是斜邊的一半。

8、直角三角形的兩條直角邊的平方和等于斜邊的平方(勾股定理)。

*勾股定理逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2 ,那么這個(gè)三角形是直角三角形。

9、直角三角形斜邊的中線等于斜邊的一半。

10、三角形的三條角平分線交于一點(diǎn),三條高線的所在直線交于一點(diǎn),三條中線交于一點(diǎn)。

展開全文閱讀