∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2" />

嫒美直播免费版app下载-嫒美直播永久免费版下载-嫒美直播最新下载安装

當(dāng)前位置:首頁 > 教育綜合 > 正文

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn.

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=

(Ⅰ)設(shè){an}的公差為d,數(shù)列{bn}的公比為q,則
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵

bn
TnTn+1
=
bn+1
qTnTn+1
=
1
q
1
Tn
?
1
Tn+1

b1
T1T2
+
b2
T2T3
+…+
bn
TnTn+1
=
1
q
1
T1
?
1
T2
+
1
T2
?
1
T3
+…+
1
Tn
?
1
Tn+1

=
1
q
1
T1
?
1
Tn+1
)=
1
q
(1-
2
2n+1?1
).

已知等差數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=

(Ⅰ)由S2=a1+a2=3+a2,b2=b1q=q,且b2+S2=12,S2=b2q.

q+3+a2=12
3+a2q2
,消去a2得:q2+q-12=0,解得q=3或q=-4(舍),
a2q2?3=32?3=6,則d=a2-a1=6-3=3,
從而an=a1+(n-1)d=3+3(n-1)=3n,
bnb1qn?13n?1
(Ⅱ)∵an=3n,bn3n?1,∴cn=3bn?λ?2
an
3
3n2n

∵cn+1>cn對任意的n∈N*恒成立,即:3n+1-λ?2n+1>3n-λ?2n恒成立,
整理得:λ?2n<2?3n對任意的n∈N*恒成立,
即:λ<2?(
3
2
)n
對任意的n∈N*恒成立.
y=2?(
3
2
)x
在區(qū)間[1,+∞)上單調(diào)遞增,∴ymin=2?
3
2
=3
,
∴λ<3.
∴λ的取值范圍為(-∞,3).

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,已知a1=b1=1,

解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列 ∴由a2+b2=a3可知:b2=a3-a2=d 又∵b2=b1q,a1=b1=1 ∴d=q 又∵S3=3(a3+b3) 即a1+a2+a3=3(a3+b3) ∴3a3+3b3-a1-a2-a3 =3d+3b3 =3d+3d2 =0 解得:d=-1或d=0(舍去) ∴an=a1+(n-1)d=-n+2 bn=b1q^(n-1)=(-1)^(n-1) 【中學(xué)生數(shù)理化】團(tuán)隊(duì)為您解答!祝您學(xué)習(xí)進(jìn)步 不明白可以追問! 滿意請點(diǎn)擊下面的【選為滿意回答】按鈕,O(∩_∩)O謝謝?

已知{an}是等差數(shù)列,其前n項(xiàng)的和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a3+b3=12

(1)∵{bn}是等比數(shù)列,首項(xiàng)為4,公比為2, ∴bn=4?2n-1=2n+1, ∵數(shù)列{an}是等差數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n?2n+3, ∴a1b1=24,∴a1=24 b1 =24 4 =4, a1b1+a2b2=2?25, ∴a2b2=2?25?24=48, ∴a2=48 b2 =48 23 =6, ∴d=a2-a1=6-4=2, ∴an=4+(n-1)×2=2n+2. ∴Sn=(a1+a2+a3+…+an)+(b1+b2+…+bn) =[4n+n(n?1) 2 ×2]+4(1?2n) 1?2 =n2+3n+2n+2-4.(2)①∵a

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列的前n項(xiàng)和為Tn,已知bn大于0,a1=b1=1,a2+b3=a3,S5=5(T3+b2)

分析:等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn, a1=b1=1,a2+b3=a3,S5=5(T3+b2), 設(shè)an=1+(n-1)d,bn=q^(n-1), 有b1=1,b3=a3-a2=d, 因?yàn)镾5=5(T3+b2),S5=5a3,T3=b1+b2+b3=1+b2+d, 所以5a3=5(1+b2+d+b2),得到5a3-5(1+d)=5(a3-1)-5d=10b2, 又因?yàn)閍3-a1=a3-1=2d,代人得到b2=1/2d, 有b1=1,b2=1/2d,b3=d, 所以公比q=b2/b1=b3/b2,所以d/2=2,得到d=4,q=2, {an}:an=1+4(
展開全文閱讀