設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=
(Ⅰ)設(shè){an}的公差為d,數(shù)列{bn}的公比為q,則
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2,
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵==(?)
∴++…+=(?+?+…+?)
=(?)=(1-).
已知等差數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=
(Ⅰ)由S2=a1+a2=3+a2,b2=b1q=q,且b2+S2=12,S2=b2q.
∴,消去a2得:q2+q-12=0,解得q=3或q=-4(舍),
∴a2=q2?3=32?3=6,則d=a2-a1=6-3=3,
從而an=a1+(n-1)d=3+3(n-1)=3n,
bn=b1qn?1=3n?1;
(Ⅱ)∵an=3n,bn=3n?1,∴cn=3bn?λ?2=3n?λ2n.
∵cn+1>cn對任意的n∈N*恒成立,即:3n+1-λ?2n+1>3n-λ?2n恒成立,
整理得:λ?2n<2?3n對任意的n∈N*恒成立,
即:λ<2?()n對任意的n∈N*恒成立.
∵y=2?()x在區(qū)間[1,+∞)上單調(diào)遞增,∴ymin=2?=3,
∴λ<3.
∴λ的取值范圍為(-∞,3).
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,已知a1=b1=1,
解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列 ∴由a2+b2=a3可知:b2=a3-a2=d 又∵b2=b1q,a1=b1=1 ∴d=q 又∵S3=3(a3+b3) 即a1+a2+a3=3(a3+b3) ∴3a3+3b3-a1-a2-a3 =3d+3b3 =3d+3d2 =0 解得:d=-1或d=0(舍去) ∴an=a1+(n-1)d=-n+2 bn=b1q^(n-1)=(-1)^(n-1) 【中學(xué)生數(shù)理化】團(tuán)隊(duì)為您解答!祝您學(xué)習(xí)進(jìn)步 不明白可以追問! 滿意請點(diǎn)擊下面的【選為滿意回答】按鈕,O(∩_∩)O謝謝?
已知{an}是等差數(shù)列,其前n項(xiàng)的和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a3+b3=12
(1)∵{bn}是等比數(shù)列,首項(xiàng)為4,公比為2, ∴bn=4?2n-1=2n+1, ∵數(shù)列{an}是等差數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n?2n+3, ∴a1b1=24,∴a1=24 b1 =24 4 =4, a1b1+a2b2=2?25, ∴a2b2=2?25?24=48, ∴a2=48 b2 =48 23 =6, ∴d=a2-a1=6-4=2, ∴an=4+(n-1)×2=2n+2. ∴Sn=(a1+a2+a3+…+an)+(b1+b2+…+bn) =[4n+n(n?1) 2 ×2]+4(1?2n) 1?2 =n2+3n+2n+2-4.(2)①∵a
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列的前n項(xiàng)和為Tn,已知bn大于0,a1=b1=1,a2+b3=a3,S5=5(T3+b2)
分析:等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn, a1=b1=1,a2+b3=a3,S5=5(T3+b2), 設(shè)an=1+(n-1)d,bn=q^(n-1), 有b1=1,b3=a3-a2=d, 因?yàn)镾5=5(T3+b2),S5=5a3,T3=b1+b2+b3=1+b2+d, 所以5a3=5(1+b2+d+b2),得到5a3-5(1+d)=5(a3-1)-5d=10b2, 又因?yàn)閍3-a1=a3-1=2d,代人得到b2=1/2d, 有b1=1,b2=1/2d,b3=d, 所以公比q=b2/b1=b3/b2,所以d/2=2,得到d=4,q=2, {an}:an=1+4(