嫒美直播免费版app下载-嫒美直播永久免费版下载-嫒美直播最新下载安装

當前位置:首頁 > 教育綜合 > 正文

在平面四邊形ABCD中,BC=1,DC=2,四個內(nèi)角A,B,C,D的度數(shù)之比為3:7:4:10,求AB的長。

在平面四邊形ABCD中,BC=1,DC=2,四個內(nèi)角A,B,C,D的度數(shù)之比為3:7:4:10,求AB的長。

先簡要畫一圖 根據(jù)題目可以得出 角C=60° 角D=120° 連接BD,取DC中點E連接EB, 所以BC=CE=ED 又因為角C=60°。所以三角形CBE為正三角形 所以有角EBC=角BEC=60° BE=DE所以角DBE=角BDE=1/2角BEC (外角等于不相鄰兩個內(nèi)角和) 所以角DBE+角EBC=90° 所以 三角形DBC為直角三角形 所以BD=根號3 因為角ADC=120° 角BDC=30° 所以角ADB為90° 角A=75° AB=根號3*sin75° 要計算要用特殊計算器

在平面四邊形ABCD中,BC=1,DC=2,四個內(nèi)角A,B,C,D的度數(shù)之比為3:7:4:10,求AB的長。

初中數(shù)學基礎(chǔ)知識測試題 學校 姓名 得分 一、填空題(本題共30小題,每小題2分,滿分60分) 1、 和 統(tǒng)稱為實數(shù). 2、方程 - =1的解為 . 3、不等式組 的解集是 . 4、伍分和貳分的硬幣共100枚,值3元2角.若設(shè)伍分硬幣有x枚,貳分硬幣有y枚,則可得方程組 . 5、計算:28x6y2÷7x3y2= . 6、因式分解:x3+x2-y3-y2= . 7、當x 時,分式 有意義;又當x 時,其值為零. 8、計算: + = ;(x2-y2)÷ = . 9、用科學記數(shù)法表示:—0.00002008= ;121900000= . 10、 的平方根為 ;- 的立方根為 . 11、計算: - =

如圖在四邊形ABCD中,BC=a,DC=2a,四個角A,B,C,D的度數(shù)之比為3:7:4:10,求AB的長

連接BD 設(shè)四個內(nèi)角A、B、C、D的度數(shù)分別是為3x,7x,4x,10x 3x+7x+4x+10x=360 x=15 所以四個內(nèi)角A、B、C、D的度數(shù)分別45度,105度,60度,150度在三角形BCD 中 利用余弦定理 BD^2=BC^2+CD^2-2BC*CD *cos60=a^2+4a^2-2*2a^2*1/2=3a^ 所以 BC=√3a 在三角形BCD中利用正弦定理得 BC/sin∠BCD=BD/sin∠C a/sin∠BCD=√3a/sin60 sin∠BCD=1/2 所以∠BCD=30 所以∠ABD=120 在三角形ABD中利用余弦定理 AB/sin∠ABD=BD/sin∠A AB

四邊形ABCD中,已知角A:角B:角C:角D=1:2:3:4,求個內(nèi)角的大小

設(shè)角A為x度,角B為2x度,角C為3x度,角D為4x度。

因為四邊形內(nèi)角和360度。

所以:X+2X+3X+4X=360

x=36

2x=72

3x=108

4x=144

所以各個內(nèi)角的大小分別是36度,72度,108度,144度。

復合應用題解題思路:

是由兩個或兩個以上相互聯(lián)系的簡單應用題組合而成的。

1、理解題意,就是弄清應用題中的已知條件和要求問題。

2、分析數(shù)量關(guān)系,就是分析已知數(shù)量與未知數(shù)數(shù)量,已知數(shù)量與未知數(shù)數(shù)量間的關(guān)系,找到解題途徑,確定先算什么,再算什么,最好算什么。

3、列式解答,就是根據(jù)分析,列出算式并計算出來。

4、驗算并給出答案,就是檢驗解答過程中是否合理,結(jié)果是否正確,與原題的條件是否相符,最后寫出答案。

已知,在四邊形ABCD中,角A,角B角C角D的度數(shù)之比為1:2:3:4,則四邊形...

四邊形內(nèi)角和360度所以四個角分別為36,72,108,144度,所以角B+角C=180度,所以AB平行于CD,所以梯形
展開全文閱讀